Bootsector (512 byte) x86 programs

Recently I wrote an x86 assembler in 512 bytes of ma-
chine code: https://github.com/kvakil/0asm. This is
called a “bootsector” program, because it fits in a typical
hard-drive sector. This zine will give you pointers on
writing bootsector x86 programs of your own, assuming
familiarity with x86 assembly.

x86 resources I found useful:

e 80x86 is an octal machine: https://bit.ly/20YLHLI

Good pseudocode, and information about the ISA.

e 80386 reference manual: https://bit.ly/20ELILr

(particularly Chapter 17, and the appendices)

Ten Tips:

1.

Baby’s first bootsector: You could write a boot-
sector from scratch, but I've made a bootsector
skeleton to extract common scaffolding:
https://github.com/kvakil /boot-skel

It also provides some nice debugging features—see
the repository for details!

Use registers for their purpose:

e sp: use as stack pointer, too good to pass up.
e ax: aim for comparisons to operate on ax, many

instructions are shorter when they use ax.
example, cmp ax,1 is shorter than cmp bx,1.)
cx: useful as a loop counter: see loop, rep, and
jcxz instructions.

si, di: use as source and destination of memory
accesses (respectively): used by some instructions,
especially lodsb, stosb, Prefer these to mov
since they are shorter and increment the pointers!
bx, bp: can be used for addressing, like
mov ax, [bx]. Generally bx is better than
bp because the common zero offset case
like mov ax, [bx+0] is a byte shorter than
mov ax, [bp+0] (Table 17-2 in manual).

dx: used by div and mul, otherwise not useful.

(For

Know the instruction set: here is a non-
exhaustive tier ranking of instructions you probably
haven’t seen.

e Useful: lodsb, stosb, inc, dec, xchg.
e Sometimes useful: cbw, scasb, movsb, loop, stc,

clc, neg, not, carry flag stuff like adc.
Usually useless: anything else (especially BCD in-
structions like aaa).

Use FLAGS: almost all instructions affect the FLAGS
register (Appendix C of manual). Because condi-
tional jumps rely on FLAGS, aim to have your func-
tion return boolean results in FLAGS. Instructions
like stc let you manipulate flags manually, but try
to have your code correctly modify FLAGS without
them to save bytes.

Forget calling conventions: you should think of
functions as common snippets of code which may

LA:

10.

affect many registers. Using any “result” register
may be useful. Any time you use push/pop or leave
should be suspect. This also typically makes it easier
to reuse code snippets between functions.

. Know the idioms: there are many “peephole” op-

timizations possible, I'll just list the ones I find most
useful. The best way to find them is by reading
through other people’s code or by mucking around
with the instruction set.

Zeroes: rather than mov ax,0 (3 bytes) use
xor ax,ax (2 bytes). Similarly instead of cmp ax,0
(3 bytes) use test ax,ax (2 bytes).

Prefer xchg to mov: If you are moving a register to
or from ax, consider using xchg (1 byte) instead of
using mov (2 bytes). This is also useful since some
instructions must use ax or have shorter encodings
when they do.

Shifts to multiply: You can use bitshifting to multi-
ply or divide by powers of two.

Set register to -CF: sbb bl,bl (2 bytes) sets
bl = -carry flag. If you are OK with setting al
instead of another register, you can use the undocu-
mented instruction salc (1 byte). Since -1 has all
bits set and 0 has no bits set (in two’s complement),
this is useful as a bitmask.

Tail call: if you have call F & ret (typically at
the end of a function), you can replace this with
just jmp F, saving up to two bytes. You can also
remove the jmp completely by moving F inline, but
of course you can only inline once.

. Beware reli16 jumps: if you jump farther than

127 bytes, you use a long jump (costing an extra
byte), and your assembler won’t tell you! Check the
assembly listing to monitor for these, and reorder
your code as appropriate.

. Beware unconditional jumps: jumping using a

condition (like jc) doesn’t cost more than jumping
unconditionally. Unconditional jumps with a nearby
conditional jump are usually a sign that the code can
be refactored to a single conditional jump (typically
by rewriting a while-loop as a do-while-loop).

. Self-modifying code: rarely useful, but very cool

when it works. One use is global variables (saving
one byte over the naive solution). For example, this
creates a counter starting at 1234:

mov ax,1234 ; 4ntitial wvalue is 1234
; LA+1 is the address of 1234

mov bx,LA+1

;, use ax as counter wvalue

inc word [bx] ; 4ncrement counter

Ignore these rules: these are just guidelines which
I've found typically reduce code size. It’s very dif-
ficult to write a small program, so all of these are
really just heuristics. Happy hacking]!

https://github.com/kvakil/0asm
https://bit.ly/2OYLHLI
https://bit.ly/2OELlLr
https://github.com/kvakil/boot-skel

	Bootsector (512 byte) x86 programs

